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Fixed Rank Kriging

Spatial model

Y (s) = x(s)
′
β + W (s) + ε(s)

= H(s) + ε(s)

H(s) is L2 continuous process in space (s ∈ D ⊂ <d) .

Observations are taken at n locations, s1, ..., sn.

Assumed that measurement error is present and ε(si )
iid∼ N(0, σ2).

The goal is to predict H(so) for any so .

Sometimes H(s) is modelled deterministically using regression models
or semiparametric models (e.g. See Paciorek (2007)).

Other times H(s) is modelled stochastically with component W (s),
that is independent of ε(s) for all s (e.g. see Cressie, (1993)).
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Fixed Rank Kriging

Spatial Prediction of H(so) (Universal Kriging)

Ĥ(s0) = x(s0)
′
β̂ + cW (s0)′Σ−1

Y (Y − X β̂)

where Y = (Y (s1), ...,Y (sn))
′
, x(so) = (x1(so), ..., xp(so))

′

Var(Y) = ΣY , cW (so) = Cov(W (so),W), W = (W (s1), ...,W (sn))
′

Ĥ(s0) has prediction variance,

σ2
k (s0) = E(H(so)− Ĥ(so))2

= CW (s0, s0)− cW (s0)′Σ−1
Y cW (s0)

+ (x(s0)− X ′Σ−1
Y cW (s0))′(X ′Σ−1

Y X )−1(x(s0)− X ′Σ−1
Y cW (s0))

Kriging is the Best Linear Unbiased Predictor (BLUP)

Provided spatial covariance is known.
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Fixed Rank Kriging

Spatial Prediction in practice

Spatial covariance is seldom known. Optimality properties fall apart.

Stationarity typically assumed to estimate spatial association.
I Parametric, exponential example,

Cov(Y (s),Y (s + h)) =


ν2exp(− ||h||ρ ), if ||h|| > 0,

ν2 + σ2 if ||h|| = 0

where θ = (ν2, ρ, σ2)
′
.

Σ−1
Y for Ĥ(so) is O(n3), making its implementation difficult for data

with over a few thousand observations.

One way to perform spatial prediction when the spatial covariance is
unknown is to plug-in estimate θ̂ of θ.
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Fixed Rank Kriging

Spatial prediction for massive datasets

Recall that kriging requires O(n3) computations for Σ−1
Y .

Spatial Stationarity is often assumed.

Recently a method called Fixed Rank Kriging (FRK) has been
proposed to obtain prediction using massive datasets. Cressie and
Johannesson (2008).

FRK is much faster than kriging and does not assume stationarity.

Recall that our model is,

Y (si ) = µ(si ) + W (si ) + ε(si )

= H(si ) + ε(si )
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Fixed Rank Kriging

Spatial prediction for massive datasets (contd.)

If a fix number of basis functions r << n are chosen such that
Z(s) ≡ (Z1(s), ...,Zr (s))′ are the basis functions,

C (W (si ),W (sj)) ≈ Z(si )
′
KZ(sj)

Then the data covariance matrix will be,

Var(Y) ≡ ΣY = ZKZ ′ + σ2V .
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Fixed Rank Kriging

Basis functions

Examples: Wavelets, thin plate regression splines and eigenvectors

Multiscale bisquare basis functions

Zj(l)(s) =


(
1− (‖s− vj(l)‖/rl)

2
)2

, if ‖s− vj(l)‖ ≤ rl

0 otherwise

where vj(l) is the j th centroid location at gridding resolution l .
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Fixed Rank Kriging

Inversion of Σ−1
Y

The benefit of representing the covariance matrix in terms of fixed
basis functions is that we can use the Sherman-Morrison-Woodbury
equation (Golub and Van Loan, (1996)),

Σ−1
Y = (σ2V )−1 − (σ2V )−1Z

(
K−1 + Z ′(σ2V )−1Z

)−1
Z ′(σ2V )−1

Most importantly notice that now we can obtain Σ−1
Y by only

inverting K and diagonal V .
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Fixed Rank Kriging

The FRK equations

Based on the basis function representation and Σ−1
Y ,

Ĥ(so) = x(so)
′
β̂ + Z(so)′KZ ′Σ−1

Y (Y − X β̂)

and the prediction variance is,

σ2
FRK (so) = Z(so)′KZ(so)− Z(so)′KZ ′Σ−1

Y ZKZ(so) + (x(so)
′
− X ′Σ−1

Y ZKZ(so))′

(X ′Σ−1
Y X )−1(x(so)

′
− X ′Σ−1

Y ZKZ(so))

σ2 and the r × r matrix K need to be estimated

10 / 24



Fixed Rank Kriging

Parameter estimation

A covariance matrix that is a function of K and σ2 is fitted to Σ̂M by
minimizing the squared Frobenius norm,

‖Σ̂M − Σ̄M(K , σ2)‖2
F = ‖Σ̂M − Z̄ K Z̄ ′ − σ2V̄ ‖2

F

This gives a constrained least squares estimate of σ2 while the
estimator of K is,

K̂ (σ̂2) = R−1Q ′
(

Σ̂M − σ̂2V̄
)

Q(R−1)′.

K̂ (σ̂2) needs to be positive definite:
I To define a proper covariance matrix.
I To be invertible.
I To ensure positive prediction variance estimates
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Fixed Rank Kriging

When is F = C − bD positive definite?

We state a general result that helps us reach our goal

Lemma

Define F = C − bD where all matrices F ,C ,D are r × r real matrices,
C � 0, and D � 0, and C and D are symmetric. Furthermore, assume F
has distinct eigenvalues and that b is any constant such that b > 0. Then,

F � 0⇔ b <
e′1Ce1

e′1De1

where e1 is the eigenvector associated with minimum eigenvalue of F , λ1.

In short, if b is smaller than the bound given in this lemma, F is p.d.

12 / 24



Fixed Rank Kriging

When is K̂ (σ̂2) positive definite?

Notice that the form of K̂ is a special case of F = C − bD

Corollary

Assume K̂ has distinct eigenvalues, λ1 < .... < λr . Then K̂ is positive
definite if and only if,

σ̂2 <
e′1R−1Q ′Σ̂MQ(R−1)′e1

e′1R−1Q ′V̄ Q(R−1)′e1

where e1 is the r × 1 normalized eigenvector corresponding to the smallest
eigenvalue λ1 of K̂ .

The result of this corollary inspires the use of the required positive
definiteness of K̂ as a linear constraint on σ̂2.

13 / 24



Fixed Rank Kriging

FRK Spatial dependence estimation algorithm

We propose the following algorithm to iteratively estimate σ2 and K ,
1 Calculate Q, R, V̄ , and Σ̂M .
2 Estimate σ2 by minimizing the Frobenius norm only subject to a

constraint that σ̂2 > 0. Start at zero an index of the iteration,
g = 0, 1, ... Set σ̂2

g as the result of the initial minimization.

3 Calculate K̂g ≡ K̂ (σ̂g ) using K̂g = R−1Q ′
(

Σ̂M − σ̂2
g V̄
)

Q(R−1)′.

4 Check if K̂g � 0. This is so if λmin,g > 0. If not, calculate an upper
bound for σ̂2

g . Let the upper bound be σ̂2
u,g .

5 Minimize the squared Frobenius norm over σ̂2
g but now subject to both,

the greater than zero constraint and to the upper bound σ̂2
u,g

constraint.
6 Repeat steps 3-5 above until K̂g � 0. Then σ̂2

g will be the ’best’

estimator of σ2 such that K̂g is positive definite.
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Fixed Rank Kriging

The FRK spatial dependence estimation algorithm
numerically converges

As g increases, does the algorithm lead to a solution to the
estimation problem?

Theorem

If λmin,g is the minimum eigenvalue of K̂g at iteration g, K̂g has distinct
eigenvalues λmin,g , ..., λmax ,g , ∀g and σ2

u,g is the upper bound found in
Step 4 of the FRK parameter estimation algorithm at iteration g, then
λmin,g > λmin,g−1 if and only if σ̂2

g < σ̂2
g−1.

15 / 24



Ocean color

Ocean color

Ocean color can measure phytoplankton

Enable scientists to study biological and biogeochemical properties of
the oceans.

Specifically it is crucial for:
I the study of organic matter produced by algae and bacteria,
I the study of the biochemistry of the ocean,
I the assessment of the role of the ocean in the carbon cycle,
I and the potential global warming trend

Yoder and Kennelly (2003), Siegel et al. (2002), Siegel et al. (2005b)
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Ocean color

Ocean color satellite missions

With satellite ocean color data, analysis of space and time variability
of the processes that regulate ocean color can now be conducted

Doney et al. (2003) and Fuentes et al. (2000) present studies of the
spatial correlation of chlorophyll at the mesoscale.

Siegel et al. (2005a) analyze the association of Inherent Optical
Properties
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Ocean color

Satellite ocean color woes

Datasets are massive

Ocean processes are generally non-stationary in both space and time.

Data have large amounts of missing data.
I Cloud cover
I Orbital sampling
I and Sun glint among other things.
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Ocean color

Satellite ocean color image

Chl global map for December 31st 2002
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Ocean color

Predicting missing observations

Several predictors are compared: OLS, AM, Kriging, FRK.

Campbell (1995) states that CHLi follows approximately a lognormal
distribution. Therefore Y (si ) = log(CHLi )
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Ocean color

A ’large’ region in the North Atlantic

n = 3, 600 observations, 15% used as test data.

AM was fit using thin plate regression splines and the basis function
matrix was truncated at 50.

Kriging was fit according to a Matern covariance function.

FRK was fit using two scales of variability: with 4, and 25 basis
functions.

Model Mean( ̂AMSPE(Υm)) CPU time (sec)

OLS 0.0136 0.25
AM 0.0076 7.12
Kriging 0.0048 66.51
FRK 0.0085 5.06
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Ocean color

A ’very large’ region in the North Pacific

Almost n = 90, 000 observations, 50% was used as test data.

AM was fit using thin plate regression splines and the basis function
matrix was truncated at 100.

FRK was fit using three scales of variability: with 16, 64 and 225
basis functions.

Model ̂AMSPE CPU time

OLS 0.0516 0.27
AM 0.0169 140.84
FRK 0.0100 167.68
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Ocean color

An example of filling missing values using FRK

Very large region in the North Pacific

log(chl) available
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Future Research

Future work

Assessing the choice of basis functions in FRK predictions.

A multivariate extension to FRK.

Implement space-time FRK model to ocean color data.

Study the spatial variability in ocean color when missing values are
imputed using FRK.

Determining the spatial/temporal distribution of ocean color
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