A Fixed Rank Prediction Algorithm for Massive Spatial Data with Application to Ocean Color

Dr. Roberto Rivera

 1 Department of Business University of Puerto Rico - Mayaguez

November 30, 2010

- Spatial model, assumptions and some implementation challenges.
- Summary of Fixed Rank Kriging by Cressie and Johannesson (2008).
- Propose algorithm to estimate FRK parameters σ^2 and K.
- Apply FRK to ocean color to predict missing observations.
- Future paths of research are discussed

- Spatial model, assumptions and some implementation challenges.
- Summary of Fixed Rank Kriging by Cressie and Johannesson (2008).
- Propose algorithm to estimate FRK parameters σ^2 and K.
- Apply FRK to ocean color to predict missing observations.
- Future paths of research are discussed

- Spatial model, assumptions and some implementation challenges.
- Summary of Fixed Rank Kriging by Cressie and Johannesson (2008).
- Propose algorithm to estimate FRK parameters σ^2 and K.
- Apply FRK to ocean color to predict missing observations
- Future paths of research are discussed

- Spatial model, assumptions and some implementation challenges.
- Summary of Fixed Rank Kriging by Cressie and Johannesson (2008).
- Propose algorithm to estimate FRK parameters σ^2 and K.
- Apply FRK to ocean color to predict missing observations.
- Future paths of research are discussed

- Spatial model, assumptions and some implementation challenges.
- Summary of Fixed Rank Kriging by Cressie and Johannesson (2008).
- Propose algorithm to estimate FRK parameters σ^2 and K.
- Apply FRK to ocean color to predict missing observations.
- Future paths of research are discussed

Spatial model

$$Y(s) = x(s)'\beta + W(s) + \epsilon(s)$$

= $H(s) + \epsilon(s)$

- $H(\mathbf{s})$ is L^2 continuous process in space $(\mathbf{s} \in \mathcal{D} \subset \Re^d)$.
- Observations are taken at n locations, $\mathbf{s}_1, ..., \mathbf{s}_n$.
- Assumed that measurement error is present and $\epsilon(\mathbf{s}_i) \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.
- The goal is to predict $H(\mathbf{s}_o)$ for any \mathbf{s}_o .
- Sometimes H(s) is modelled deterministically using regression models or semiparametric models (e.g. See Paciorek (2007)).
- Other times $H(\mathbf{s})$ is modelled stochastically with component $W(\mathbf{s})$, that is independent of $\epsilon(\mathbf{s})$ for all \mathbf{s} (e.g. see Cressie, (1993)).

Spatial Prediction of $H(\mathbf{s}_o)$ (Universal Kriging)

$$\hat{\mathcal{H}}(\mathbf{s}_0) = \mathbf{x}(\mathbf{s}_0)^{'}\hat{\boldsymbol{\beta}} + \mathbf{c}_W(\mathbf{s}_0)^{\prime}\boldsymbol{\Sigma}_Y^{-1}(\mathbf{Y} - X\hat{\boldsymbol{\beta}})$$

- where $\mathbf{Y} = (Y(\mathbf{s}_1), ..., Y(\mathbf{s}_n))', \ \mathbf{x}(\mathbf{s}_o) = (x_1(\mathbf{s}_o), ..., x_p(\mathbf{s}_o))'$
- $Var(\mathbf{Y}) = \Sigma_Y$, $\mathbf{c}_W(\mathbf{s}_o) = Cov(W(\mathbf{s}_o), \mathbf{W})$, $\mathbf{W} = (W(\mathbf{s}_1), ..., W(\mathbf{s}_n))'$
- $\hat{H}(\mathbf{s}_0)$ has prediction variance,

$$\begin{split} \sigma_k^2(s_0) &= E(H(s_o) - \hat{H}(s_o))^2 \\ &= C_W(s_0, s_0) - c_W(s_0)' \Sigma_Y^{-1} c_W(s_0) \\ &+ (x(s_0) - X' \Sigma_Y^{-1} c_W(s_0))' (X' \Sigma_Y^{-1} X)^{-1} (x(s_0) - X' \Sigma_Y^{-1} c_W(s_0)) \end{split}$$

- Kriging is the Best Linear Unbiased Predictor (BLUP)
- Provided spatial covariance is known.

Spatial Prediction of $H(\mathbf{s}_o)$ (Universal Kriging)

$$\hat{\mathcal{H}}(\mathbf{s}_0) = \mathbf{x}(\mathbf{s}_0)^{'}\hat{\boldsymbol{\beta}} + \mathbf{c}_W(\mathbf{s}_0)^{\prime}\boldsymbol{\Sigma}_Y^{-1}(\mathbf{Y} - X\hat{\boldsymbol{\beta}})$$

- where $\mathbf{Y} = (Y(\mathbf{s}_1), ..., Y(\mathbf{s}_n))', \mathbf{x}(\mathbf{s}_o) = (x_1(\mathbf{s}_o), ..., x_p(\mathbf{s}_o))'$
- $Var(\mathbf{Y}) = \Sigma_Y$, $\mathbf{c}_W(\mathbf{s}_o) = Cov(W(\mathbf{s}_o), \mathbf{W})$, $\mathbf{W} = (W(\mathbf{s}_1), ..., W(\mathbf{s}_n))'$
- $\hat{H}(\mathbf{s}_0)$ has prediction variance,

$$\begin{split} \sigma_k^2(s_0) &= E(H(s_o) - \hat{H}(s_o))^2 \\ &= C_W(s_0, s_0) - c_W(s_0)' \Sigma_Y^{-1} c_W(s_0) \\ &+ (x(s_0) - X' \Sigma_Y^{-1} c_W(s_0))' (X' \Sigma_Y^{-1} X)^{-1} (x(s_0) - X' \Sigma_Y^{-1} c_W(s_0)) \end{split}$$

- Kriging is the Best Linear Unbiased Predictor (BLUP)
- Provided spatial covariance is known.

- Spatial covariance is seldom known. Optimality properties fall apart.
- Stationarity typically assumed to estimate spatial association.
 - ▶ Parametric, exponential example,

$$Cov(Y(\mathbf{s}), Y(\mathbf{s} + \mathbf{h})) = \begin{cases} \nu^2 exp(-\frac{||\mathbf{h}||}{\rho}), & \text{if } ||\mathbf{h}|| > 0 \\ \nu^2 + \sigma^2 & \text{if } ||\mathbf{h}|| = 0 \end{cases}$$

where
$$\boldsymbol{\theta} = (\nu^2, \rho, \sigma^2)^{'}$$

- Σ_Y^{-1} for $\hat{H}(\mathbf{s}_o)$ is $O(n^3)$, making its implementation difficult for data with over a few thousand observations.
- One way to perform spatial prediction when the spatial covariance is unknown is to plug-in estimate $\hat{\theta}$ of θ .

- Spatial covariance is seldom known. Optimality properties fall apart.
- Stationarity typically assumed to estimate spatial association.
 - ▶ Parametric, exponential example,

$$Cov(Y(\mathbf{s}), Y(\mathbf{s} + \mathbf{h})) = \begin{cases} \nu^2 exp(-\frac{||\mathbf{h}||}{\rho}), & \text{if } ||\mathbf{h}|| > 0 \\ \nu^2 + \sigma^2 & \text{if } ||\mathbf{h}|| = 0 \end{cases}$$

where
$$oldsymbol{ heta} = (
u^2,
ho, \sigma^2)^{'}$$
 .

- Σ_Y^{-1} for $\hat{H}(\mathbf{s}_o)$ is $O(n^3)$, making its implementation difficult for data with over a few thousand observations.
- One way to perform spatial prediction when the spatial covariance is unknown is to plug-in estimate $\hat{\theta}$ of θ .

- Spatial covariance is seldom known. Optimality properties fall apart.
- Stationarity typically assumed to estimate spatial association.
 - ▶ Parametric, exponential example,

$$Cov(Y(\mathbf{s}), Y(\mathbf{s} + \mathbf{h})) = \begin{cases} \nu^2 exp(-\frac{||\mathbf{h}||}{\rho}), & \text{if } ||\mathbf{h}|| > 0, \\ \\ \nu^2 + \sigma^2 & \text{if } ||\mathbf{h}|| = 0 \end{cases}$$

where
$$\boldsymbol{\theta} = (\nu^2, \rho, \sigma^2)'$$
.

- Σ_Y^{-1} for $\hat{H}(\mathbf{s}_o)$ is $O(n^3)$, making its implementation difficult for data with over a few thousand observations.
- One way to perform spatial prediction when the spatial covariance is unknown is to plug-in estimate $\hat{\theta}$ of θ .

- Spatial covariance is seldom known. Optimality properties fall apart.
- Stationarity typically assumed to estimate spatial association.
 - ▶ Parametric, exponential example,

$$Cov(Y(\mathbf{s}), Y(\mathbf{s} + \mathbf{h})) = \begin{cases} \nu^2 exp(-\frac{||\mathbf{h}||}{\rho}), & \text{if } ||\mathbf{h}|| > 0, \\ \\ \nu^2 + \sigma^2 & \text{if } ||\mathbf{h}|| = 0 \end{cases}$$

where
$$\boldsymbol{\theta} = (\nu^2, \rho, \sigma^2)'$$
.

- Σ_Y^{-1} for $\hat{H}(\mathbf{s}_o)$ is $O(n^3)$, making its implementation difficult for data with over a few thousand observations.
- One way to perform spatial prediction when the spatial covariance is unknown is to plug-in estimate $\hat{\theta}$ of θ .

- Recall that kriging requires $O(n^3)$ computations for Σ_Y^{-1} .
- Spatial Stationarity is often assumed.
- Recently a method called Fixed Rank Kriging (FRK) has been proposed to obtain prediction using massive datasets. Cressie and Johannesson (2008).
- FRK is much faster than kriging and does not assume stationarity.
- Recall that our model is,

$$Y(\mathbf{s}_i) = \mu(\mathbf{s}_i) + W(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$$

= $H(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$

- Recall that kriging requires $O(n^3)$ computations for Σ_Y^{-1} .
- Spatial Stationarity is often assumed.
- Recently a method called Fixed Rank Kriging (FRK) has been proposed to obtain prediction using massive datasets. Cressie and Johannesson (2008).
- FRK is much faster than kriging and does not assume stationarity.
- Recall that our model is,

$$Y(\mathbf{s}_i) = \mu(\mathbf{s}_i) + W(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$$

= $H(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$

- Recall that kriging requires $O(n^3)$ computations for Σ_Y^{-1} .
- Spatial Stationarity is often assumed.
- Recently a method called Fixed Rank Kriging (FRK) has been proposed to obtain prediction using massive datasets. Cressie and Johannesson (2008).
- FRK is much faster than kriging and does not assume stationarity.
- Recall that our model is,

$$Y(\mathbf{s}_i) = \mu(\mathbf{s}_i) + W(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$$

= $H(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$

- Recall that kriging requires $O(n^3)$ computations for Σ_Y^{-1} .
- Spatial Stationarity is often assumed.
- Recently a method called Fixed Rank Kriging (FRK) has been proposed to obtain prediction using massive datasets. Cressie and Johannesson (2008).
- FRK is much faster than kriging and does not assume stationarity.
- Recall that our model is,

$$Y(\mathbf{s}_i) = \mu(\mathbf{s}_i) + W(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$$

= $H(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$

Spatial prediction for massive datasets (contd.)

• If a fix number of basis functions r << n are chosen such that $\mathbf{Z}(\mathbf{s}) \equiv (Z_1(\mathbf{s}),...,Z_r(\mathbf{s}))'$ are the basis functions,

$$C(W(\mathbf{s}_i), W(\mathbf{s}_j)) \approx \mathbf{Z}(\mathbf{s}_i)^{'} K \mathbf{Z}(\mathbf{s}_j)$$

• Then the data covariance matrix will be,

$$Var(\mathbf{Y}) \equiv \Sigma_Y = ZKZ' + \sigma^2 V.$$

Basis functions

- Examples: Wavelets, thin plate regression splines and eigenvectors
- Multiscale bisquare basis functions

$$Z_{j(l)}(\mathbf{s}) = \begin{cases} \left(1 - (\|\mathbf{s} - \mathbf{v}_{j(l)}\|/r_l)^2\right)^2 &, \text{if } \|\mathbf{s} - \mathbf{v}_{j(l)}\| \le r_l \\ 0 & \text{otherwise} \end{cases}$$

where $\mathbf{v}_{i(l)}$ is the j^{th} centroid location at gridding resolution l.

Inversion of Σ_Y^{-1}

 The benefit of representing the covariance matrix in terms of fixed basis functions is that we can use the Sherman-Morrison-Woodbury equation (Golub and Van Loan, (1996)),

$$\Sigma_{Y}^{-1} = (\sigma^{2}V)^{-1} - (\sigma^{2}V)^{-1}Z(K^{-1} + Z'(\sigma^{2}V)^{-1}Z)^{-1}Z'(\sigma^{2}V)^{-1}$$

• Most importantly notice that now we can obtain Σ_Y^{-1} by only inverting K and diagonal V.

The FRK equations

 \bullet Based on the basis function representation and Σ_{Y}^{-1} ,

$$\hat{\mathcal{H}}(\mathbf{s}_o) = \mathbf{x}(\mathbf{s}_o)^{'}\hat{\boldsymbol{\beta}} + \mathbf{Z}(\mathbf{s}_o)^{'} \mathcal{K} Z^{'} \boldsymbol{\Sigma}_{Y}^{-1} (\mathbf{Y} - X\hat{\boldsymbol{\beta}})$$

and the prediction variance is,

$$\begin{array}{lcl} \sigma_{FRK}^2(\mathbf{s}_o) & = & \mathbf{Z}(\mathbf{s}_o)'K\mathbf{Z}(\mathbf{s}_o) - \mathbf{Z}(\mathbf{s}_o)'KZ'\boldsymbol{\Sigma}_Y^{-1}ZK\mathbf{Z}(\mathbf{s}_o) + (\mathbf{x}(\mathbf{s}_o)^{'} - X'\boldsymbol{\Sigma}_Y^{-1}ZK\mathbf{Z}(\mathbf{s}_o))' \\ & & (X'\boldsymbol{\Sigma}_Y^{-1}X)^{-1}(\mathbf{x}(\mathbf{s}_o)^{'} - X'\boldsymbol{\Sigma}_Y^{-1}ZK\mathbf{Z}(\mathbf{s}_o)) \end{array}$$

• σ^2 and the $r \times r$ matrix K need to be estimated

• A covariance matrix that is a function of K and σ^2 is fitted to $\widehat{\Sigma}_M$ by minimizing the squared Frobenius norm,

$$\|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{\Sigma}}_{M}(\boldsymbol{K}, \sigma^{2})\|_{F}^{2} = \|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{Z}}\boldsymbol{K}\bar{\boldsymbol{Z}}' - \sigma^{2}\bar{\boldsymbol{V}}\|_{F}^{2}$$

$$\hat{K}(\hat{\sigma}^2) = R^{-1}Q'\left(\widehat{\Sigma}_M - \hat{\sigma}^2\bar{V}\right)Q(R^{-1})'.$$

- $\hat{K}(\hat{\sigma}^2)$ needs to be positive definite:
 - ▶ To define a proper covariance matrix.
 - ► To be invertible
 - ► To ensure positive prediction variance estimates

• A covariance matrix that is a function of K and σ^2 is fitted to $\widehat{\Sigma}_M$ by minimizing the squared Frobenius norm,

$$\|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{\Sigma}}_{M}(\boldsymbol{K}, \sigma^{2})\|_{F}^{2} = \|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{Z}}\boldsymbol{K}\bar{\boldsymbol{Z}}' - \sigma^{2}\bar{\boldsymbol{V}}\|_{F}^{2}$$

$$\hat{K}(\hat{\sigma}^2) = R^{-1}Q'\left(\widehat{\Sigma}_M - \hat{\sigma}^2\bar{V}\right)Q(R^{-1})'.$$

- $\hat{K}(\hat{\sigma}^2)$ needs to be positive definite:
 - ▶ To define a proper covariance matrix.
 - ► To be invertible.
 - ► To ensure positive prediction variance estimates

• A covariance matrix that is a function of K and σ^2 is fitted to $\widehat{\Sigma}_M$ by minimizing the squared Frobenius norm,

$$\|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{\Sigma}}_{M}(\boldsymbol{K}, \sigma^{2})\|_{F}^{2} = \|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{Z}}\boldsymbol{K}\bar{\boldsymbol{Z}}' - \sigma^{2}\bar{\boldsymbol{V}}\|_{F}^{2}$$

$$\hat{K}(\hat{\sigma}^2) = R^{-1}Q'\left(\widehat{\Sigma}_M - \hat{\sigma}^2\bar{V}\right)Q(R^{-1})'.$$

- $\hat{K}(\hat{\sigma}^2)$ needs to be positive definite:
 - ▶ To define a proper covariance matrix.
 - ▶ To be invertible.
 - ► To ensure positive prediction variance estimates

• A covariance matrix that is a function of K and σ^2 is fitted to $\widehat{\Sigma}_M$ by minimizing the squared Frobenius norm,

$$\|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{\Sigma}}_{M}(\boldsymbol{K}, \sigma^{2})\|_{F}^{2} = \|\widehat{\boldsymbol{\Sigma}}_{M} - \bar{\boldsymbol{Z}}\boldsymbol{K}\bar{\boldsymbol{Z}}' - \sigma^{2}\bar{\boldsymbol{V}}\|_{F}^{2}$$

$$\hat{K}(\hat{\sigma}^2) = R^{-1}Q'\left(\widehat{\Sigma}_M - \hat{\sigma}^2\bar{V}\right)Q(R^{-1})'.$$

- $\hat{K}(\hat{\sigma}^2)$ needs to be positive definite:
 - ▶ To define a proper covariance matrix.
 - ► To be invertible.
 - ► To ensure positive prediction variance estimates

When is F = C - bD positive definite?

• We state a general result that helps us reach our goal

Lemma

Define F = C - bD where all matrices F, C, D are $r \times r$ real matrices, $C \succ 0$, and $D \succ 0$, and C and D are symmetric. Furthermore, assume F has distinct eigenvalues and that b is any constant such that b > 0. Then,

$$F \succ 0 \Leftrightarrow b < \frac{\mathbf{e}_1' C \mathbf{e}_1}{\mathbf{e}_1' D \mathbf{e}_1}$$

where e_1 is the eigenvector associated with minimum eigenvalue of F, λ_1 .

• In short, if b is smaller than the bound given in this lemma, F is p.d.

When is $\hat{K}(\hat{\sigma}^2)$ positive definite?

• Notice that the form of \hat{K} is a special case of F = C - bD

Corollary

Assume \hat{K} has distinct eigenvalues, $\lambda_1 < < \lambda_r$. Then \hat{K} is positive definite if and only if,

$$\hat{\sigma}^2 < \frac{\mathbf{e}_1' R^{-1} Q' \widehat{\Sigma}_M Q(R^{-1})' \mathbf{e}_1}{\mathbf{e}_1' R^{-1} Q' \bar{V} Q(R^{-1})' \mathbf{e}_1}$$

where \mathbf{e}_1 is the $r \times 1$ normalized eigenvector corresponding to the smallest eigenvalue λ_1 of \hat{K} .

• The result of this corollary inspires the use of the required positive definiteness of \hat{K} as a linear constraint on $\hat{\sigma}^2$.

- ullet We propose the following algorithm to iteratively estimate σ^2 and K,
 - ① Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_{\sigma}^2$ as the result of the initial minimization.

 - ① Check if $\hat{K}_g \succ 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_g^2$. Let the upper bound be $\hat{\sigma}_{u,g}^2$.
 - ① Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint
 - ① Repeat steps 3-5 above until $\hat{K}_g \succ 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

- ullet We propose the following algorithm to iteratively estimate σ^2 and K,
 - Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_{\sigma}^2$ as the result of the initial minimization.
 - ① Calculate $\hat{K}_g \equiv \hat{K}(\hat{\sigma}_g)$ using $\hat{K}_g = R^{-1}Q'\left(\widehat{\Sigma}_M \hat{\sigma}_g^2 \bar{V}\right)Q(R^{-1})'$.
 - ① Check if $\hat{K}_g \succ 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_g^2$. Let the upper bound be $\hat{\sigma}_{u,g}^2$.
 - ① Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint
 - ① Repeat steps 3-5 above until $\hat{K}_g \succ 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

- ullet We propose the following algorithm to iteratively estimate σ^2 and K,
 - Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_{\sigma}^2$ as the result of the initial minimization.
 - ① Calculate $\hat{K}_g \equiv \hat{K}(\hat{\sigma}_g)$ using $\hat{K}_g = R^{-1}Q'\left(\widehat{\Sigma}_M \hat{\sigma}_g^2 \bar{V}\right)Q(R^{-1})'$.
 - ① Check if $\hat{K}_g \succ 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_g^2$. Let the upper bound be $\hat{\sigma}_{u,g}^2$.
 - o Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint.
 - **6** Repeat steps 3-5 above until $\hat{K}_g \succ 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

- ullet We propose the following algorithm to iteratively estimate σ^2 and K,
 - Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_{\sigma}^2$ as the result of the initial minimization.
 - $\textbf{ Oalculate } \hat{K}_g \equiv \hat{K}(\hat{\sigma}_g) \text{ using } \hat{K}_g = R^{-1}Q'\left(\widehat{\Sigma}_M \hat{\sigma}_g^2 \bar{V}\right)Q(R^{-1})'.$
 - ② Check if $\hat{K}_g \succ 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_{\sigma}^2$. Let the upper bound be $\hat{\sigma}_{u\sigma}^2$.
 - on Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint.
 - **1** Repeat steps 3-5 above until $\hat{K}_g \succ 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

- We propose the following algorithm to iteratively estimate σ^2 and K,
 - Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_g^2$ as the result of the initial minimization.
 - **3** Calculate $\hat{K}_g \equiv \hat{K}(\hat{\sigma}_g)$ using $\hat{K}_g = R^{-1}Q'\left(\widehat{\Sigma}_M \hat{\sigma}_g^2 \bar{V}\right)Q(R^{-1})'$.
 - **4** Check if $\hat{K}_g > 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_g^2$. Let the upper bound be $\hat{\sigma}_{u,g}^2$.
 - ignormal Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint.
 - **1** Repeat steps 3-5 above until $\hat{K}_g \succ 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

- We propose the following algorithm to iteratively estimate σ^2 and K,
 - **1** Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_{\sigma}^2$ as the result of the initial minimization.
 - **3** Calculate $\hat{K}_g \equiv \hat{K}(\hat{\sigma}_g)$ using $\hat{K}_g = R^{-1}Q'\left(\widehat{\Sigma}_M \hat{\sigma}_g^2 \bar{V}\right)Q(R^{-1})'$.
 - **1** Check if $\hat{K}_g > 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_g^2$. Let the upper bound be $\hat{\sigma}_{u,g}^2$.
 - **1** Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint.
 - **6** Repeat steps 3-5 above until $\hat{K}_g \succ 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

- We propose the following algorithm to iteratively estimate σ^2 and K,
 - **1** Calculate Q, R, \bar{V} , and $\hat{\Sigma}_M$.
 - ② Estimate σ^2 by minimizing the Frobenius norm only subject to a constraint that $\hat{\sigma}^2 > 0$. Start at zero an index of the iteration, $g = 0, 1, \dots$ Set $\hat{\sigma}_{\sigma}^2$ as the result of the initial minimization.
 - **3** Calculate $\hat{K}_g \equiv \hat{K}(\hat{\sigma}_g)$ using $\hat{K}_g = R^{-1}Q'\left(\widehat{\Sigma}_M \hat{\sigma}_g^2 \bar{V}\right)Q(R^{-1})'$.
 - **1** Check if $\hat{K}_g \succ 0$. This is so if $\lambda_{min,g} > 0$. If not, calculate an upper bound for $\hat{\sigma}_g^2$. Let the upper bound be $\hat{\sigma}_{u,g}^2$.
 - **1** Minimize the squared Frobenius norm over $\hat{\sigma}_g^2$ but now subject to both, the greater than zero constraint and to the upper bound $\hat{\sigma}_{u,g}^2$ constraint.
 - **6** Repeat steps 3-5 above until $\hat{K}_g > 0$. Then $\hat{\sigma}_g^2$ will be the 'best' estimator of σ^2 such that \hat{K}_g is positive definite.

The FRK spatial dependence estimation algorithm numerically converges

 As g increases, does the algorithm lead to a solution to the estimation problem?

Theorem

If $\lambda_{min,g}$ is the minimum eigenvalue of \hat{K}_g at iteration g, \hat{K}_g has distinct eigenvalues $\lambda_{min,g},...,\lambda_{max,g}, \forall g$ and $\sigma_{u,g}^2$ is the upper bound found in Step 4 of the FRK parameter estimation algorithm at iteration g, then $\lambda_{min,g} > \lambda_{min,g-1}$ if and only if $\hat{\sigma}_g^2 < \hat{\sigma}_{g-1}^2$.

Ocean color

- Ocean color can measure phytoplankton
- Enable scientists to study biological and biogeochemical properties of the oceans.
- Specifically it is crucial for:
 - the study of organic matter produced by algae and bacteria.
 - ▶ the study of the biochemistry of the ocean,
 - the assessment of the role of the ocean in the carbon cycle,
 - ▶ and the potential global warming trend
- Yoder and Kennelly (2003), Siegel et al. (2002), Siegel et al. (2005b)

- Ocean color can measure phytoplankton
- Enable scientists to study biological and biogeochemical properties of the oceans.
- Specifically it is crucial for:
 - the study of organic matter produced by algae and bacteria,
 - the study of the biochemistry of the ocean.
 - the assessment of the role of the ocean in the carbon cycle,
 - ▶ and the potential global warming trend
- Yoder and Kennelly (2003), Siegel et al. (2002), Siegel et al. (2005b)

- Ocean color can measure phytoplankton
- Enable scientists to study biological and biogeochemical properties of the oceans.
- Specifically it is crucial for:
 - the study of organic matter produced by algae and bacteria,
 - ▶ the study of the biochemistry of the ocean,
 - the assessment of the role of the ocean in the carbon cycle
 - ▶ and the potential global warming trend
- Yoder and Kennelly (2003), Siegel et al. (2002), Siegel et al. (2005b)

- Ocean color can measure phytoplankton
- Enable scientists to study biological and biogeochemical properties of the oceans.
- Specifically it is crucial for:
 - the study of organic matter produced by algae and bacteria,
 - the study of the biochemistry of the ocean,
 - ▶ the assessment of the role of the ocean in the carbon cycle,
 - ▶ and the potential global warming trend
- Yoder and Kennelly (2003), Siegel et al. (2002), Siegel et al. (2005b)

- Ocean color can measure phytoplankton
- Enable scientists to study biological and biogeochemical properties of the oceans.
- Specifically it is crucial for:
 - the study of organic matter produced by algae and bacteria,
 - the study of the biochemistry of the ocean,
 - ▶ the assessment of the role of the ocean in the carbon cycle,
 - and the potential global warming trend
- Yoder and Kennelly (2003), Siegel et al. (2002), Siegel et al. (2005b)

Ocean color satellite missions

- With satellite ocean color data, analysis of space and time variability of the processes that regulate ocean color can now be conducted
- Doney et al. (2003) and Fuentes et al. (2000) present studies of the spatial correlation of chlorophyll at the mesoscale.
- Siegel et al. (2005a) analyze the association of Inherent Optical Properties

- Datasets are massive
- Ocean processes are generally non-stationary in both space and time.
- Data have large amounts of missing data.
 - Cloud cover
 - Orbital sampling
 - and Sun glint among other things.

- Datasets are massive
- Ocean processes are generally non-stationary in both space and time.
- Data have large amounts of missing data.
 - Cloud cover
 - Orbital sampling
 - and Sun glint among other things.

- Datasets are massive
- Ocean processes are generally non-stationary in both space and time.
- Data have large amounts of missing data.
 - Cloud cover
 - Orbital sampling
 - and Sun glint among other things.

- Datasets are massive
- Ocean processes are generally non-stationary in both space and time.
- Data have large amounts of missing data.
 - Cloud cover
 - Orbital sampling
 - and Sun glint among other things.

Satellite ocean color image

Predicting missing observations

- Several predictors are compared: OLS, AM, Kriging, FRK.
- Campbell (1995) states that CHL_i follows approximately a lognormal distribution. Therefore $Y(\mathbf{s}_i) = log(CHL_i)$

A 'large' region in the North Atlantic

- n = 3,600 observations, 15% used as test data.
- AM was fit using thin plate regression splines and the basis function matrix was truncated at 50.
- Kriging was fit according to a Matern covariance function.
- FRK was fit using two scales of variability: with 4, and 25 basis functions.

Model	Mean($\widehat{AMSPE}(\Upsilon_m)$)	CPU time (sec)
OLS	0.0136	0.25
AM	0.0076	7.12
Kriging	0.0048	66.51
FRK	0.0085	5.06

A 'very large' region in the North Pacific

- Almost n = 90,000 observations, 50% was used as test data.
- AM was fit using thin plate regression splines and the basis function matrix was truncated at 100.
- FRK was fit using three scales of variability: with 16, 64 and 225 basis functions.

Model	AMSPE	CPU time
OLS	0.0516	0.27
AM	0.0169	140.84
FRK	0.0100	167.68

An example of filling missing values using FRK

• Very large region in the North Pacific

Future work

- Assessing the choice of basis functions in FRK predictions.
- A multivariate extension to FRK.
- Implement space-time FRK model to ocean color data.
- Study the spatial variability in ocean color when missing values are imputed using FRK.
- Determining the spatial/temporal distribution of ocean color