

Benthic Imaging of Coral Reefs in Optically-Deep Waters

Roy A. Armstrong, Ph.D.
Bio-optical Oceanography Laboratory
Department of Marine Sciences
University of Puerto Rico

Presented at the PRYSIG Conference, Mayaguez, Puerto Rico December 2, 2011

Imaging the Deep Coral Reefs With AUVs

- Effective airborne or satellite remote sensing of coral reefs is limited to shallow, optically clear water.
- AUVs can be configured to carry a wide variety of imaging sensors and other instruments such as side-scan sonars, multibeam and pencil beam sonars, chemical sensors, video plankton recorders, etc.
- The Seabed AUV can be programmed to maintain a constant distance from the bottom and conduct large scale mapping missions.

Seabed AUV Operations and Sensors

Seabed altitude and Acoustic Imaging

Multi-beam image, SW Puerto Rico

Seabed Optical Imaging

Two Prosilica GC-1380C CCD cameras with 1360 x 1024 resolution 12 bit dynamic range (0 - 4,095 grey levels)

From an altitude of 3 m, the images are 3.12 m wide by 2.3 m long, covering an area of 7.17 m²

Spatial resolutions of 2.2 mm per pixel

A 150 Ws strobe provides the only source of illumination

Two cameras can be used, a downward looking camera and a forward facing camera

Over 100,000 images of mesophotic reefs in the Puerto Rico Shelf

Color Compensation of Underwater Imagery

- U/W Imagery characterized by low contrast and low color fidelity
- Nonlinear attenuation of the visible spectrum in seawater
- U/W images tend to be saturated in the blue-green region

Quantitative Coral Cover Data by Species

One-dimensional mosaic

Seven images were used from a depth of 35 m measuring approximately 6.3 m long and covering an area of about 20 m²

Two-dimensional mosaic

Forward-looking Camera

Forward-looking camera image showing a red hind grouper (*E. guttatus*) (A) and enlargement of the fish (B)

Forward – Looking Camera - 216 m Depth

Area Covered vs. AUV Altitude

- From a 3 m altitude the area covered by a typical, 1 km AUV transect is approximately 3,120 m²
- At 15 m altitude the area covered by each image is 178 m²
- A one km transect at this altitude will cover an area of approximately 10,700 m² (assuming 40% overlap)
- Landscape-level analysis of coral bleaching and mortality can be obtained from altitudes of 5-10 m, depending on the level of detail required, while covering an area of 52 and 104 m², respectively, per image.

Acknowledgements

Hanumant Singh, Clayton Kuntz, Chris Murphy

Sponsored by:

NSF-MRI
Woods Hole Oceanographic Institution
Center for Subsurface Sensing and Imaging (CenSSIS) – NSF