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Benthic Habitat Monitoring

m Benthic habitats are places on or near the sea floor
where aquatic organisms live.
These beds of seagrass, areas of mud and sand, and coral
reefs provide food and shelter to a rich array of animals.
m The preservation of this ecosystem, especially its
coral reefs, is a National priority.

Need to establish an ongoing and consistent national
database of coastal benthic data that document changes
and trends over time.
m This ecosystem is an attractive environment for many
recreational, commercial and scientific activities,
and is critical to the tourist economy
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Subsurface Spectral Sensing
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Imaging Spectrometry

ARPL

EACH SPATIAL ELEMENT HAS A
CONTINUOUS SPECTRUM THAT
IS USEDTO ANALYZE THE

SURFACE AND ATMOSPHERE

224 SPECTRAL IMAGES
TAKEN SIMULTANEQUSLY

Aviris.jpl.nasa.gov
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Hyperspectral Imaging

AVIRIS Puerto Rico 051213r4
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» Information Content
Temporal, Spatial and Spectral
Domains

» High Spectral Resolution
Separation of Atmospheric,
Bottom and Water Column
Contributions
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HSI Is a Key Technology

e Environmental monitoring
— NASA Flora
— CHRIS (Compact High Resolution Imaging Spectrometer)
— Proba (ESA),
— HERO (Canadian),
— SPECTRA (ESA), and
— EnMAP (German) missions.

e DoD Situational Awareness
— AFRL/Raytheon TacSat 3 ARTEMIS

e Space Exploration

— NASA MRO Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM)

— NASA Moon Mineral Mapper (M3) mission
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Challenge: Low spatial resolution of
hyperspectral sensors

IKONOS PAN Sharpened Image Hyperion Image

Multispectral Sensor Hyperspectral Sensor
Im PAN, 4m/4 bands MSI 30 m, 220 bands, 10nm

Enrigue Reef in Parguera, Lajas, PR
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Linear Mixing Model:
Standard for Land Surface

imaging
specitrometer

a single pixel with three

incident materials: A Band C

solar irradiance

material fraction
A 0.25
BE 0.25
IFOV of pixel C[] 0.50
A
each V
endmember
has a unique B V
spectrum
c V

the mixed spectrum is just
a weighted average

— mix=0.25*A+0.25*B+0.5*C
heterogeneous IFOV
for a single pixel -\ der Meer and S.M. de Jong, eds., Imaging Spectroscopy,2003



Unmixing

Unmixing
Algorithm

Hyperspectral
Image
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Endmembers Estimated with
Pixel Purity Index (PPI)
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This Is a Subsurface Sensing Problem




Challenge: Subsurface Unmixin
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Temporal and Spatial Variability of Optical Properties and Variable Bathymetry



0.07 Endmember R, varies with depth
and optical properties
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Effect of Endmember Variability: Water

Watar Estirmated Spetral Response Water Abundance map(PP) Sea Water Abundance map(NFINDR)
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Spectmal Response

Effect of Endmember Variability: Sand

Sand Estimated Spectral Response
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Unmixing for Benthic Habitat Mapping

m Removal of the Water Column
Want to do it unsupervised
Nonlinear optimization problem

Nonlinear interaction of the optical properties,
bathymetry and bottom albedo.

m Need of good inversion model

Hydrolight is a good forward radiative transfer model
—> too detailed for inversion

Lee’s Semianalytical Model is an inversion model
m Other possibilities are described in the literature



Model for R, and r.. (Maritorena, et al. 1994)

Remote sensing reflectance, R,
L 0.5r

— W

rs ~
E, 1-1.5r,
Subsurface remote sensing reflectance, r,

= 19°(1 - expl— (k- e )+ L exp- -+, )}
Water Colun;;l Component \T[ —— C\(,)mponent Y




Lee’s Bio-optical Semi-analytical Model (cont.)

m Model is parametrized by 5 parameters

A

R _=f(P,B,G,BP,H,p_,a)

Psang 1S @ 550-nm normalized sand spectra and a IS a
vector of nuisance parameters.



Lee’'s Method to Determine IOP and
Bathymetry

m Nonlinear least squares optimization

2

R, - ﬁrs (yﬂﬁsand)(
R I

15 |2

where }/=[P,B,G,BP,H]T

2

Y. =argmin
Y

and p..., IS @ 550-nm normalized sand spectra.

Model originally intended for the estimation of optical
properties not for bottom mapping.



Goodman’s Linear Unmixing Variable
Endmember Approach (LIGU)

m Step 1: Retrieval of water optical properties and
bathymetry using Lee’s approach

Spatial spatial distribution of OP’s

m Step 2: Compute the endmembers at each
location (x,y) for a sand, coral, and algae

forwarded to the surface
ﬁi (X’ y) = Rrs (?Lee (X’ y)’ pl) for1i= 1’2’3

m Step 3: Linear Unmixing at each location

rsXy ZfR Xy



=
Combined Inversion and Unmixing at

the Bottom (CIUB) Approach

m Use of subsurface remote sensing reflectance, r

C B
r.o=r "l 1—exp- : + b, kH ¢+ |+exps — : + b, kH lBE
cos(0,) cos(0o cos(0,) cos(Do T

' e . K
Water Column Contribution Bottom Contribution

m Linear mixing model for the bottom albedo

p =95t
S = [ﬁsand ﬁalgae ﬁreef]

where X Is the vector of abundances and all
endmembers are normalized to 1 at 550nm




CIUB Approach (cont.)

m Work with the subsurface remote sensing
reflectance

rrs - l,;rs (y9 Sf)”i

(’9, f) = arg min

2
vt
l.1rs p)
2
— Partially Linear
. |bly)—= ALY ||, Pari
—_ arg min 5 Nonlinear
v.f Least Squares

r

rs Problem

2
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Two-Stage Simple Iterative Inversion
Approach

m Initialization using Lee’s approach
m Step 1: Abundance estimation
A A 2

= arg min >
vof
2

r

IS

tep2: Update optical properties,
thymetry and bottom albedo at 550

In(y)- A

2
2

2

¥ = arg min
v

r

IS




HyCIAT: A Hyperspectral Coastal
Image Analysis Tool



GORDON "" :

CenSSIS,

HyCIAT Toolbox
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RGB Composite (30-20-9)

=} Hyperspectral Coastal Image Analysis Toolbox EE®

Working File: hawaii.mat



esults Optimization: Water Optical Properties,
athymetry and Albedo at 550nm

Backscattering

Algorithm : LIGU
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® Abundance Estimates

Coral Abundance

Result Window: Sand Abundance

Algorithm : LIGU

_ Select
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Algae Abundance
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ractional Plots: RGB Composite of
hree Abundance Maps

Sand

Algorithm : LIGU

Coral Algae

<} RGB Composite



» Kaneohe Bay

Kaneohe Bay: is in the
north eastern side of the
Island of Oahu in Hawalill,
1s12.8 Km long and 4.3
Km broad, with a
maximum depth in the
bay of 12 m.
Hyperspectral imagery
was acquired in April of
2000 by AVIRIS.
Hyperspectral image
acquired using AVIRIS with
224 spectral bands was
subset to 42 bands in the
0.4 to 0.8 um range, it
consists of an image
already corrected for
atmospheric and sunglint
effects .
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ke B athymetry

CIUB: Depth SHOALS Depth
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Hyperspectral Acquisition Areas

D Multiresolution science areas, 100 km" 2

D Crerall acquisition area, 2150 km*2
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Preview of New Data Set




@8 Conclusions

= Hyperspectral Remote Sensing has
great potential to address problems
In coastal remote sensing

= A software tool for coastal analysis
has been developed

= MATLAB GUI tool provides simple
environment for fast analysis

= Simple GUI makes algorithms
accessible to a wider community
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