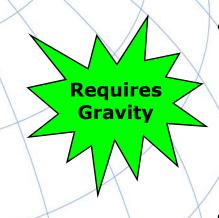
GRAV-D

Gravity for the Re-definition of the American Vertical Datum

Why this briefing?

- NGS recently acquired a new airborne gravimeter
 - Intended to support GRAV-D
- GRAV-D is an ambitious new plan for NGS to accomplish part of its mission
 - Up front costs
 - Long-term savings
 - A huge contribution to GEOSS
 - Part of the NGS, NOS and NOAA missions

Q: What is GRAV-D?


A: Gravity to determine heights accurately

The first, middle and last point of GRAV-D:

Gravity and **Heights** are inseparably connected

- Or (to borrow from a common bumper sticker):
 - No gravity, no height
 - Know gravity, know height

Dominant Height Systems in use in the USA

Requires Gravity

Orthometric

- Colloquially, but incorrectly, called "height above mean sea level"
- On most topographic maps
- Is a >99% successful method to tell which way water will flow

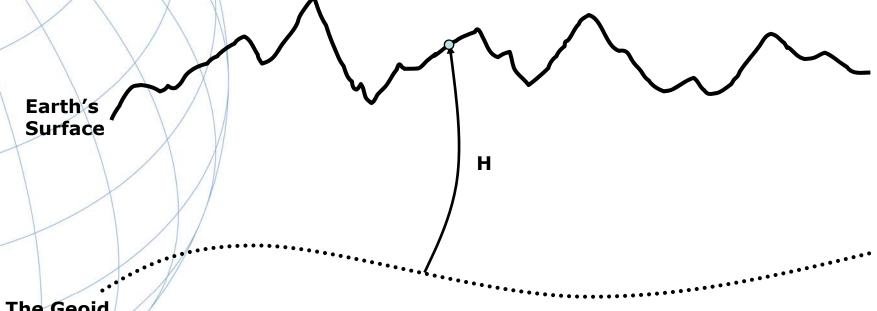
<u>Ellipsoid</u>

- Almost exclusively from GPS
- Won't tell water flow / floodplains

Dynamic

- Directly proportional to potential energy: always tells which way water will flow
- Dynamic heights are not lengths!
- More on this later...

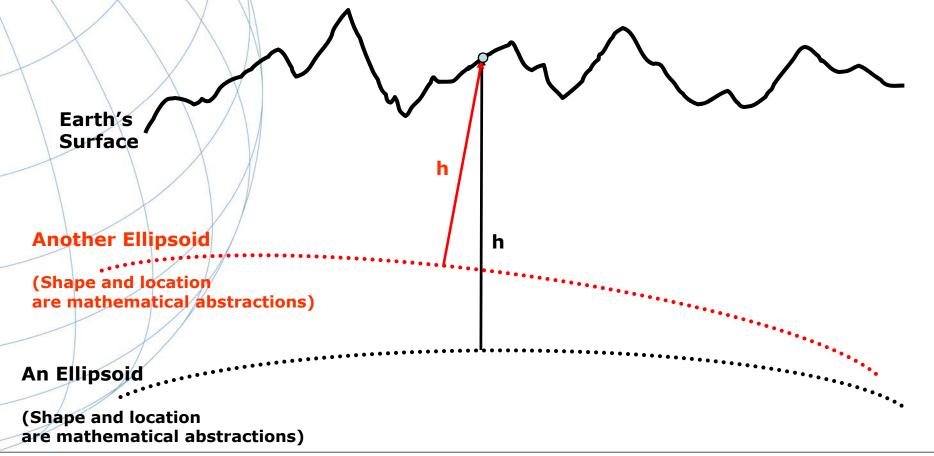
Heights


 Most heights need to refer to some "reference surface"

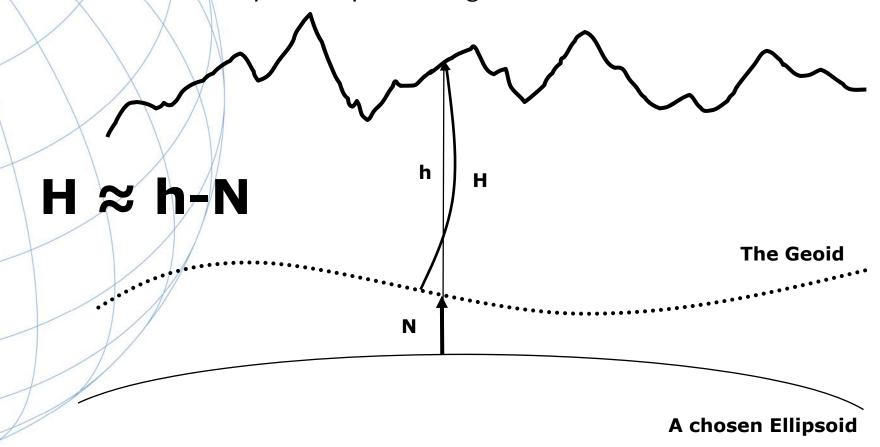
The reference surface is part of the "vertical datum"

Orthometric Height (H)

The distance along the <u>plumb line</u> from <u>the geoid</u> up to the point of interest


The Geoid

(Shape and location determined by Earth's gravity field)


Ellipsoid Height (h)

The distance along the <u>ellipsoidal normal</u> from <u>some ellipsoid</u> up to the point of interest

Geoid Undulation (N)

The distance along the <u>ellipsoidal normal</u> from <u>some ellipsoid</u> up to <u>the geoid</u>

Vertical Datums in the USA

• Ellipsoid heights: NAD 83

Orthometric heights: NAVD 88

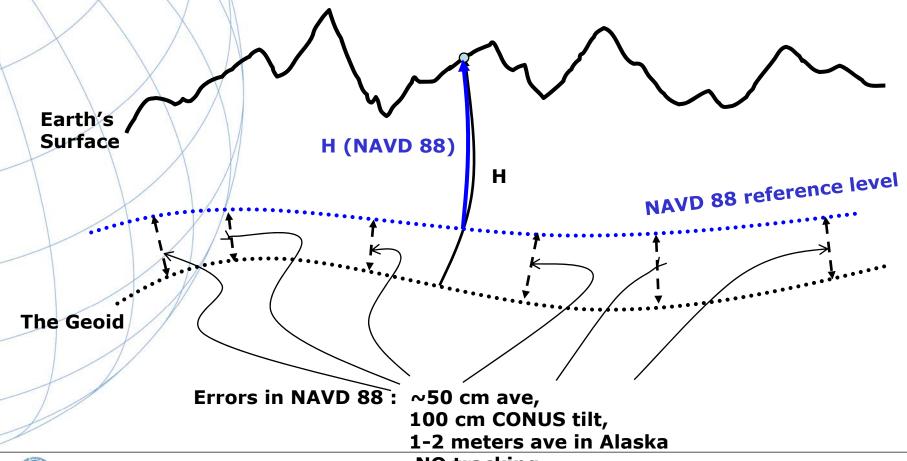
<u>Vertical Datum – History</u> <u>(Orthometric Heights)</u>

- 1807 1996
 - Defined and Accessed Leveling/Passive Marks
 - NAVD 88: 600,000+ Marks
 - NGS detects hundreds moved/destroyed every year
 - How many go undetected?
 - Post-Glacial-Rebound, Subsidence, Tectonics, Frost-Heave lots of motion out there!

Leveling to define and use NAVD 88

- Leveling
 - Measure geometric changes point to point
 - Correct for multiple physical effects
 - Attempts to yield differential geopotential (energy) levels

- Convert from geopotential to <u>dynamic</u> height or <u>orthometric</u> height
- Very time consuming and tedious



Why isn't NAVD 88 good enough anymore?

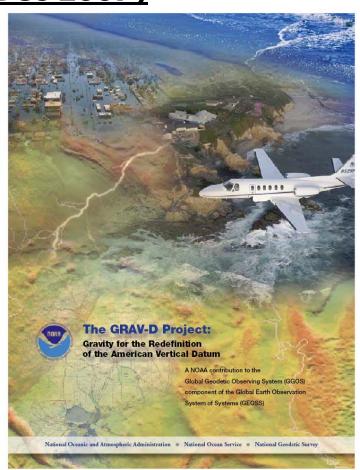
- The GPS era brought fast, accurate ellipsoid heights – naturally this drove a desire for fast, accurate orthometric heights
- Leveling the country can not be done again
 Too costly in time and money
- Leveling yields cross-country error build-up
- Leveling requires leaving behind marks
 Bulldozers and crustal motion do their worst
- NAVD 88 H=0 level is known not to be the geoid
 Biases , Tilts

Orthometric Height (H)

The distance along the <u>plumb line</u> from <u>the geoid</u> up to the point of interest

Fast, Accurate Orthometric Heights

- GPS already gives fast accurate ellipsoid heights
- If the geoid were determined to highest accuracy...
- Voila, Fast, accurate orthometric heights
 - Anywhere in the nation
 - Time-changes to H determined through:
 - GPS on CORS (h changes)
 - Absolute gravity spot checks (N changes)


Intermission...

- To get fast, accurate, inexpensive orthometric heights, all pieces are in place except one:
 - A well known, and time-tracked geoid model
- Thus "GRAV-D"
 - Gravity for the Re-definition of the American Vertical Datum
 - Get good gravity once (airborne gravity)
 - Track gravity on a broad scale over time (absolute gravity)
 - Replace NAVD 88 with a sustainable, accurate, inexpensive vertical datum
 - Up front cost is "high", but pay off is sustainability at lowcost!

Q: What is GRAV-D?

A: A Plan (released Dec 2007)

- Official NGS policy as of Nov 14, 2007
 - → \$38.5M over 10 years
- Airborne Gravity Snapshot
- Absolute Gravity Tracking
- Re-define the Vertical Datum of the USA by 2017

Mission of NGS

 To define, maintain and provide access to the National Spatial Reference System to meet our nation's economic, social, and environmental needs

And

 To be a world leader in geospatial activities, including the development and promotion of standards, specifications, and guidelines.

Mission of NOS

 To provide products, services, and information that promote safe navigation, support coastal communities, sustain marine ecosystems, and mitigate coastal hazards.

Mission of NOAA

• To understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet our nation's economic, social and environmental needs

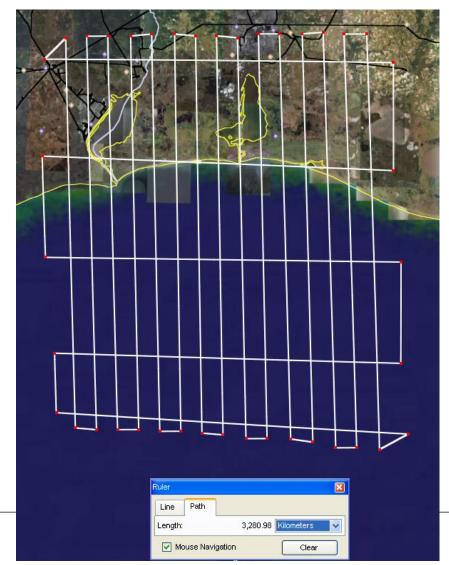
Missions and GRAV-D

- NGS can neither fulfill their mission, nor contribute to the NOS and NOAA missions without modernizing the vertical datum component of the NSRS
- Only GRAV-D offers a sustainable, accurate method for doing this

GRAV-D

- National Scale has 2 parts:
 - High Resolution Snapshot
 - Low Resolution Movie
- Local/Regional Scale has 1 part:
 - High Resolution Movie

GRAV-D


- National High Resolution Snapshot
 - Predominantly through airborne gravity
 - With Absolute Gravity for ties and checks
 - Relative Gravity for expanding local regions where airborne shows significant mismatch with existing terrestrial

Existing Gulf Coast Gravity Holdings 32 20-100 km **Terrestrial gravity** gravity gaps along coast 31 30 Latitude 29 **New Orleans** 28 **Ship gravity** 27 266 268 270 272 274 Longitude

GRAV-D: Campaign I Phase I, Part 1 - Testing

 Test varieties of flight heights / speeds / spacings for optimal ratio of

\$\$: g-accuracy

GRAV-D: Campaign I Phase I, Part 2 - Testing

- Test area for proof of concept to define vertical datum from GPS + gravimetric geoid
- PR/VI cost would run ~\$300k

Daniel Winester monumentando estacion en CI-019

MAYAGUEZ A A 2008

National Geodetic Survey

Observaciones Gravimetricas y con GPS en el RUM 6 al 10 de nov. 2008 por Daniel Winister-Geodesta

- Gravedad Absoluta con el FG5 en CI-019
 - Por 48 horas
- GPS en Aguadilla y en estacion UPRM GPS 14
- Gravedad Relativa
 - En la estacion UPRM GPS 14
 - En el Aeropuerto Rafael Hernandez-Aguadilla
 - # En estacion Mayaguez AA 2008 en CI-019

Airborne Meter

First build (Oct 2007)

Initial road tests (Nov 2007)

Unit is TAGS (Turn-key Airborne Gravity System)

- Sensor, Software and Training sold as a package from Micro-G/LaCoste
- · Has been flight tested and proven as the most accurate airborne meter available

Should anyone lose sight of why NGS cares about knowing and maintaining accurate heights...

Questions/Comments?

- http://www.ngs.noaa.gov/GRAV-D/
- Prof. Linda L. Vélez-Rodríguez, MS, PE, PLS, catedrática de la Universidad de Puerto Rico Recinto Universitario de Mayagüez del programa de agrimensura del Departamento de Ingeniería Civil y Agrimensura, "Geodetic Liason" ante el "National Geodetic Survey", su correo electrónico es velezl@uprm.edu