Long-term monitoring of seagrasses using a WV-2 satellite image, historical aerial photography and field data

Mariana C. León-Pérez, William J. Hernández and Roy Armstrong Bio-Optical Oceanography Laboratory Marine Science Department University of Puerto Rico, Mayagüez Campus

Reported cases of seagrass loss have increased, suggesting increased rates of seagrass decline worldwide (Orth *et al.*, 2006).

Water quality

marinas.com

Objective

- The main goal of this study is to determine long-term changes in seagrass habitat cover at Caja de Muertos Island Nature Reserve (CMINR).
 - Generate a more accurate and current seagrass benthic map of CMINR.
 - Reconstruct the historic distribution of seagrass around CMINR.

Google earth

Imagery Date: 4/9/2013 18°01'46.22" N 66°24'25.30" W elev 570 ft eye alt 196.73 mi 🔘

N

Image Landsat Data LDEO-Columbia, NSF, NOAA Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Study Area

Caja de Muertos Island Nature Reserve

Esri, DeLorme, GEBCO, NOAA I Geographis, DeLorme, HERE, G

Field work

- Sampled area was determined based on 3 criteria:
 - Depth limit of *Thalassia testudinum*
 - Distance from shore
 - Seagrass detection limit of historic photos
- Sampling sites
 - 155 sites for calibration and validation
- Equipment
 - On-board submersible HD video camera
 - Boat depth sounder
 - Trimble Juno 3D Series

					Truth data					
	Benthic class	Sand	Hardbottom	Coral	Sparse seagrass	Dense seagrass	Very dense seagrass	Classification overall	Producer accuracy	Overall
assifier results	Sand	8			1			9	88.89%	Accuracy
	Hardbottom			4	1		1	6	0.00%	
	Coral			1			1	2	50.00%	48.05%
	Sparse seagrass				4			4	100.00%	
	Dense seagrass	3	2		2	3		10	30.00%	1.13
ΰ	Very dense seagrass					4	2	6	33.33%	B4 vs l
	Truth overall	11	2	5	8	7	4	37		
	User accuracy	72.73%	0.00%	20.00%	50.00%	42.86%	50.00%			

Β5

Benthic categories

Cate	aorv	% C	% Cover				
0	Sector	0	10-40 %				
0	Seagrass		40-70 %				
0	Colonized hardbottom	٠	70-100 %				
0	Colonized hardbottom with some seagrass						
0	Mix algae over unconsolidated sedimen						
0	Sand						

Seagrass species

Seagrass species

- Thalassia testudinum
- * T. testudinum with macroalgae
- Syringodium filiforme
- S. filiforme with macroalgae
- T. testudinum and S. filiforme
- T. testudinum and S. filiforme with macroalgae
- Halodule wrightii
- H. wrightii and S. filiforme

1950-2014 Seagrass Cover Change

Acknowledgments

- This project is supported by NOAA CREST
 - Grant #NA06OAR480162, UPR-Mayaguez
 - Sea Grant Puerto Rico
- WorldView-2 Imagery
 - Puerto Rico Seagrass Fund
- Special thanks to:
 - Jan P. Zegarra
 - Juan P. Alvarez
 - Hector Martinez
 - Nick Hammerman
 - Jeremy Kravitz
 - Luis Lugo (Vita)
 - Hector Ruiz
 - Milton Carlo
 - Orlando Espinosa

