Remote Sensing of Water Quality in Coastal Areas

Roy Armstrong

Department of Marine Sciences
University of Puerto Rico

Liane Guild

NASA Ames Research Center Moffett Field, CA

14th PRYSIG Conference Mayaguez, Puerto Rico October 7, 2017

Coastal Remote Sensing Observations

Remote sensing radiance spectra are composites of radiance (reflectance) from:

- 1. the atmosphere (gas molecules, particulates, aerosols, water vapor);
- 2. the sea surface;
- 3. the water column (water molecules, phytoplankton, colored dissolved organic matter); and
- 4. the bottom

~80% of the signal is scattered or absorbed by the atmosphere

Challenges of Coastal Remote Sensing

- Water is a dark target with high sensor signal (SNR) requirements
- Two factors that limit the accuracy of retrievals for coastal ocean color:
 - 1. accurate atmospheric correction (aerosol and trace gas plumes from continental sources)
 - 2. accurate retrieval of water column and benthic ecosystem reflectance

 Need for sensors with high dynamic range for benthic habitats under variable bathymetry and with adequate spatial resolution

Absorption spectra for water, CDOM, and phytoplankton

Optically-shallow vs. optically-deep waters

Case Study: Monterey Bay, California

Ship and Airborne-based Measurements: Monterey Bay

- Underway T, S, Fluorescence
- At each station (2-3 stations per day):
 - Size fractionated chlorophyll, phytoplankton species ID
 - CDOM, absorption spectra, nutrients
 - Sun photometer spectra
 - HyperPro cast, C-OPS cast
 - Water-leaving radiance, profile data
 - Backscatter/ac-s casts
 - ASD surface reflectance

NASA COAST October 28, 2011

Imaging Spectrometer Imagery, Site Location, Sea-truth Measurements

Not Red Tide = Station 17, Flightline 29

Ship-based HyperPro II measurements

Airborne measurements of water-leaving radiance (imaging spectrometer) were collected at the same time as AOD and CWV from a sun photometer. Ship-based measurements (red tide, not red tide) collected +/- 30 min of airborne data collection.

Requirements for Water Quality Remote Sensing

- Measurements over spatial extents from < 10 m to 100s of meters.
 However, most satellite ocean color data have a spatial resolution of about 1 km
- Coastal ocean phenomena are measured at different temporal scales
 - Timing is important for capturing transient phenomena (e.g. hours to days) – hence the need for high resolution geostationary data
- Optically-complex coastal waters require hyperspectral data for spectrally separating the signals from optically-competing water column parameters

ISS HICO Data

Case Study: Southwestern Puerto Rico

Sampling Stations – SW Puerto Rico

Ship-based Measurements: SW Puerto Rico

Biogeochemical Properties

Surface water samples are used for measuring CDOM, Total Suspended Matter, and Chlorophyll. IOPs: a, c, b_b

Profiling sensor package that includes a CTD, a WetStar fluorometer, an ac-9 for absorption and attenuation, and a HydroScat-6 for backscattering.

AOP: Lu, Ed, Rrs

GER-1500 spectroradiometer measures Lu, Ls, and Ed. This is used to calculate Rrs.

Satlantic
HyperPro
Profiling
Spectroradio
meter.

Results- Field Sampling

GER1500 surface remote sensing reflectance

Water Quality-Chlorophyll

Kd (490) Values (Turbidity)

Conclusions

- Coastal ocean color algorithms are sensitive to errors in atmospheric correction models, the presence of nearby clouds, sensor calibration, low sensor signal, and sunglint correction.
- Spatial resolution of existing satellite ocean color sensors is usually too coarse for coastal zone studies.
- Sampling frequency of existing satellite sensors can be inadequate for capturing transient phenomena such as red tides and algal blooms.
- Cloud cover limits the amount of usable imagery.
- Optically-complex coastal waters require hyperspectral data for separating the signals from water column parameters.

Acknowledgements

NASA Funding for Monterey Bay Projects:

Hands-On Project Experience (HOPE), Science Innovation Fund (SIF), Water Quality, HyspIRI Airborne Preparatory Project, and Ocean Biology and Biogeochemistry

Funding for Work in Puerto Rico:

NASA HARPOONS

Puerto Rico Sea Grant

NOAA EPP/SSIO

